Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 698
Filtrar
1.
Math Biosci Eng ; 21(2): 3129-3145, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454722

RESUMO

Biometric authentication prevents losses from identity misuse in the artificial intelligence (AI) era. The fusion method integrates palmprint and palm vein features, leveraging their stability and security and enhances counterfeiting prevention and overall system efficiency through multimodal correlations. However, most of the existing multi-modal palmprint and palm vein feature extraction methods extract only feature information independently from different modalities, ignoring the importance of the correlation between different modal samples in the class to the improvement of recognition performance. In this study, we addressed the aforementioned issues by proposing a feature-level joint learning fusion approach for palmprint and palm vein recognition based on modal correlations. The method employs a sparse unsupervised projection algorithm with a "purification matrix" constraint to enhance consistency in intra-modal features. This minimizes data reconstruction errors, eliminating noise and extracting compact, and discriminative representations. Subsequently, the partial least squares algorithm extracts high grayscale variance and category correlation subspaces from each modality. A weighted sum is then utilized to dynamically optimize the contribution of each modality for effective classification recognition. Experimental evaluations conducted for five multimodal databases, composed of six unimodal databases including the Chinese Academy of Sciences multispectral palmprint and palm vein databases, yielded equal error rates (EER) of 0.0173%, 0.0192%, 0.0059%, 0.0010%, and 0.0008%. Compared to some classical methods for palmprint and palm vein fusion recognition, the algorithm significantly improves recognition performance. The algorithm is suitable for identity recognition in scenarios with high security requirements and holds practical value.


Assuntos
Inteligência Artificial , Identificação Biométrica , Identificação Biométrica/métodos , Algoritmos , Mãos/anatomia & histologia , Aprendizagem
2.
PLoS One ; 19(2): e0291084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358992

RESUMO

In the field of data security, biometric security is a significant emerging concern. The multimodal biometrics system with enhanced accuracy and detection rate for smart environments is still a significant challenge. The fusion of an electrocardiogram (ECG) signal with a fingerprint is an effective multimodal recognition system. In this work, unimodal and multimodal biometric systems using Convolutional Neural Network (CNN) are conducted and compared with traditional methods using different levels of fusion of fingerprint and ECG signal. This study is concerned with the evaluation of the effectiveness of proposed parallel and sequential multimodal biometric systems with various feature extraction and classification methods. Additionally, the performance of unimodal biometrics of ECG and fingerprint utilizing deep learning and traditional classification technique is examined. The suggested biometric systems were evaluated utilizing ECG (MIT-BIH) and fingerprint (FVC2004) databases. Additional tests are conducted to examine the suggested models with:1) virtual dataset without augmentation (ODB) and 2) virtual dataset with augmentation (VDB). The findings show that the optimum performance of the parallel multimodal achieved 0.96 Area Under the ROC Curve (AUC) and sequential multimodal achieved 0.99 AUC, in comparison to unimodal biometrics which achieved 0.87 and 0.99 AUCs, for the fingerprint and ECG biometrics, respectively. The overall performance of the proposed multimodal biometrics outperformed unimodal biometrics using CNN. Moreover, the performance of the suggested CNN model for ECG signal and sequential multimodal system based on neural network outperformed other systems. Lastly, the performance of the proposed systems is compared with previously existing works.


Assuntos
Identificação Biométrica , Aprendizado Profundo , Identificação Biométrica/métodos , Biometria/métodos , Redes Neurais de Computação , Eletrocardiografia/métodos
3.
Animal ; 18(3): 101079, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377806

RESUMO

Biometrics methods, which currently identify humans, can potentially identify dairy cows. Given that animal movements cannot be easily controlled, identification accuracy and system robustness are challenging when deploying an animal biometrics recognition system on a real farm. Our proposed method performs multiple-cow face detection and face classification from videos by adjusting recent state-of-the-art deep-learning methods. As part of this study, a system was designed and installed at four meters above a feeding zone at the Volcani Institute's dairy farm. Two datasets were acquired and annotated, one for facial detection and the second for facial classification of 77 cows. We achieved for facial detection a mean average precision (at Intersection over Union of 0.5) of 97.8% using the YOLOv5 algorithm, and facial classification accuracy of 96.3% using a Vision-Transformer model with a unique loss-function borrowed from human facial recognition. Our combined system can process video frames with 10 cows' faces, localize their faces, and correctly classify their identities in less than 20 ms per frame. Thus, up to 50 frames per second video files can be processed with our system in real-time at a dairy farm. Our method efficiently performs real-time facial detection and recognition on multiple cow faces using deep neural networks, achieving a high precision in real-time operation. These qualities can make the proposed system a valuable tool for an automatic biometric cow recognition on farms.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Feminino , Bovinos , Humanos , Animais , Fazendas , Identificação Biométrica/métodos , Redes Neurais de Computação , Algoritmos , Indústria de Laticínios/métodos
4.
IEEE Trans Image Process ; 33: 1588-1599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38358875

RESUMO

Attributed to the development of deep networks and abundant data, automatic face recognition (FR) has quickly reached human-level capacity in the past few years. However, the FR problem is not perfectly solved in case of large poses and uncontrolled occlusions. In this paper, we propose a novel bypass enhanced representation learning (BERL) method to improve face recognition under unconstrained scenarios. The proposed method integrates self-supervised learning and supervised learning together by attaching two auxiliary bypasses, a 3D reconstruction bypass and a blind inpainting bypass, to assist robust feature learning for face recognition. Among them, the 3D reconstruction bypass enforces the face recognition network to encode pose independent 3D facial information, which enhances the robustness to various poses. The blind inpainting bypass enforces the face recognition network to capture more facial context information for face inpainting, which enhances the robustness to occlusions. The whole framework is trained in end-to-end manner with two self-supervised tasks above and the classic supervised face identification task. During inference, the two auxiliary bypasses can be detached from the face recognition network, avoiding any additional computational overhead. Extensive experimental results on various face recognition benchmarks show that, without any cost of extra annotations and computations, our method outperforms state-of-the-art methods. Moreover, the learnt representations can also well generalize to other face-related downstream tasks such as the facial attribute recognition with limited labeled data.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Humanos , Identificação Biométrica/métodos , Face/diagnóstico por imagem , Face/anatomia & histologia , Bases de Dados Factuais , Benchmarking
5.
Neural Netw ; 170: 1-17, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972453

RESUMO

Biometrics is a field that has been given importance in recent years and has been extensively studied. Biometrics can use physical and behavioural differences that are unique to individuals to recognize and identify them. Today, biometric information is used in many areas such as computer vision systems, entrance systems, security and recognition. In this study, a new biometrics database containing silhouette, thermal face and skeletal data based on the distance between the joints was created to be used in behavioural and physical biometrics studies. The fact that many cameras were used in previous studies increases both the processing intensity and the material cost. This study aimed to both increase the recognition performance and reduce material costs by adding thermal face data in addition to soft and behavioural biometrics with the optimum camera. The presented data set was created in accordance with both motion recognition and person identification. Various data loss scenarios and multi-biometrics approaches based on data fusion have been tried on the created data sets and the results have been given comparatively. In addition, the correlation coefficient of the motion frames method to obtain energy images from silhouette data was tested on this dataset and yielded high-accuracy results for both motion and person recognition.


Assuntos
Identificação Biométrica , Biometria , Humanos , Biometria/métodos , Inteligência Artificial , Bases de Dados Factuais , Identificação Biométrica/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-38082835

RESUMO

Newborn face recognition is a meaningful application for obstetrics in the hospital, as it enhances security measures against infant swapping and abduction through authentication protocols. Due to limited newborn face datasets, this topic was not thoroughly studied. We conducted a clinical trial to create a dataset that collects face images from 200 newborns within an hour after birth, namely NEWBORN200. To our best knowledge, this is the largest newborn face dataset collected in the hospital for this application. The dataset was used to evaluate the four latest ResNet-based deep models for newborn face recognition, including ArcFace, CurricularFace, MagFace, and AdaFace. The experimental results show that AdaFace has the best performance, obtaining 55.24% verification accuracy at 0.1% false accept rate in the open set while achieving 78.76% rank-1 identification accuracy in a closed set. It demonstrates the feasibility of using deep learning for newborn face recognition, also indicating the direction of improvement could be the robustness to varying postures.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Humanos , Lactente , Recém-Nascido , Benchmarking , Identificação Biométrica/métodos , Bases de Dados Factuais , Face
7.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139551

RESUMO

This research work focuses on a Near-Infra-Red (NIR) finger-images-based multimodal biometric system based on Finger Texture and Finger Vein biometrics. The individual results of the biometric characteristics are fused using a fuzzy system, and the final identification result is achieved. Experiments are performed for three different databases, i.e., the Near-Infra-Red Hand Images (NIRHI), Hong Kong Polytechnic University (HKPU) and University of Twente Finger Vein Pattern (UTFVP) databases. First, the Finger Texture biometric employs an efficient texture feature extracting algorithm, i.e., Linear Binary Pattern. Then, the classification is performed using Support Vector Machine, a proven machine learning classification algorithm. Second, the transfer learning of pre-trained convolutional neural networks (CNNs) is performed for the Finger Vein biometric, employing two approaches. The three selected CNNs are AlexNet, VGG16 and VGG19. In Approach 1, before feeding the images for the training of the CNN, the necessary preprocessing of NIR images is performed. In Approach 2, before the pre-processing step, image intensity optimization is also employed to regularize the image intensity. NIRHI outperforms HKPU and UTFVP for both of the modalities of focus, in a unimodal setup as well as in a multimodal one. The proposed multimodal biometric system demonstrates a better overall identification accuracy of 99.62% in comparison with 99.51% and 99.50% reported in the recent state-of-the-art systems.


Assuntos
Identificação Biométrica , Dedos , Humanos , Dedos/diagnóstico por imagem , Dedos/irrigação sanguínea , Identificação Biométrica/métodos , Biometria/métodos , Mãos/diagnóstico por imagem , Redes Neurais de Computação
8.
Sensors (Basel) ; 23(22)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38005564

RESUMO

(1) Background: The ability to recognize identities is an essential component of security. Electrocardiogram (ECG) signals have gained popularity for identity recognition because of their universal, unique, stable, and measurable characteristics. To ensure accurate identification of ECG signals, this paper proposes an approach which involves mixed feature sampling, sparse representation, and recognition. (2) Methods: This paper introduces a new method of identifying individuals through their ECG signals. This technique combines the extraction of fixed ECG features and specific frequency features to improve accuracy in ECG identity recognition. This approach uses the wavelet transform to extract frequency bands which contain personal information features from the ECG signals. These bands are reconstructed, and the single R-peak localization determines the ECG window. The signals are segmented and standardized based on the located windows. A sparse dictionary is created using the standardized ECG signals, and the KSVD (K-Orthogonal Matching Pursuit) algorithm is employed to project ECG target signals into a sparse vector-matrix representation. To extract the final representation of the target signals for identification, the sparse coefficient vectors in the signals are maximally pooled. For recognition, the co-dimensional bundle search method is used in this paper. (3) Results: This paper utilizes the publicly available European ST-T database for our study. Specifically, this paper selects ECG signals from 20, 50 and 70 subjects, each with 30 testing segments. The method proposed in this paper achieved recognition rates of 99.14%, 99.09%, and 99.05%, respectively. (4) Conclusion: The experiments indicate that the method proposed in this paper can accurately capture, represent and identify ECG signals.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Algoritmos , Eletrocardiografia/métodos , Análise de Ondaletas , Bases de Dados Factuais
9.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37837025

RESUMO

The advent of Social Behavioral Biometrics (SBB) in the realm of person identification has underscored the importance of understanding unique patterns of social interactions and communication. This paper introduces a novel multimodal SBB system that integrates human micro-expressions from text, an emerging biometric trait, with other established SBB traits in order to enhance online user identification performance. Including human micro-expression, the proposed method extracts five other original SBB traits for a comprehensive representation of the social behavioral characteristics of an individual. Upon finding the independent person identification score by every SBB trait, a rank-level fusion that leverages the weighted Borda count is employed to fuse the scores from all the traits, obtaining the final identification score. The proposed method is evaluated on a benchmark dataset of 250 Twitter users, and the results indicate that the incorporation of human micro-expression with existing SBB traits can substantially boost the overall online user identification performance, with an accuracy of 73.87% and a recall score of 74%. Furthermore, the proposed method outperforms the state-of-the-art SBB systems.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Biometria , Comunicação
10.
IEEE Trans Image Process ; 32: 5652-5663, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824317

RESUMO

Face recognition has achieved remarkable success owing to the development of deep learning. However, most of existing face recognition models perform poorly against pose variations. We argue that, it is primarily caused by pose-based long-tailed data - imbalanced distribution of training samples between profile faces and near-frontal faces. Additionally, self-occlusion and nonlinear warping of facial textures caused by large pose variations also increase the difficulty in learning discriminative features of profile faces. In this study, we propose a novel framework called Symmetrical Siamese Network (SSN), which can simultaneously overcome the limitation of pose-based long-tailed data and pose-invariant features learning. Specifically, two sub-modules are proposed in the SSN, i.e., Feature-Consistence Learning sub-Net (FCLN) and Identity-Consistence Learning sub-Net (ICLN). For FCLN, the inputs are all face images on training dataset. Inspired by the contrastive learning, we simulate pose variations of faces and constrain the model to focus on the consistent areas between the original face image and its corresponding virtual pose face images. For ICLN, only profile images are used as inputs, and we propose to adopt Identity Consistence Loss to minimize the intra-class feature variation across different poses. The collaborative learning of two sub-modules guarantees that the parameters of network are updated in a relatively equal probability between near-frontal face images and profile images, so that the pose-based long-tailed problem can be effectively addressed. The proposed SSN shows comparable results over the state-of-the-art methods on several public datasets. In this study, LightCNN is selected as the backbone of SSN, and existing popular networks also can be used into our framework for pose-robust face recognition.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Algoritmos , Identificação Biométrica/métodos , Face/diagnóstico por imagem , Face/anatomia & histologia , Bases de Dados Factuais
11.
Comput Intell Neurosci ; 2023: 6443786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469627

RESUMO

The need for information security and the adoption of the relevant regulations is becoming an overwhelming demand worldwide. As an efficient solution, hybrid multimodal biometric systems utilize fusion to combine multiple biometric traits and sources with improving recognition accuracy, higher security assurance, and to cope with the limitations of the uni-biometric system. In this paper, three strategies for dealing with a feature-level deep fusion of five biometric traits (face, both irises, and two fingerprints) derived from three sources of evidence are proposed and compared. In the first two proposed methodologies, each feature vector is mapped from the feature space into the reproducing kernel Hilbert space (RKHS) separately by selecting the appropriate reproducing kernel. In this higher space, where the result is the conversion of nonlinear relations to linear ones, dimensionality reduction algorithms (KPCA, KLDA) and quaternion-based algorithms (KQPCA, KQPCA) are used for the fusion of the feature vectors. In the third methodology, the fusion of feature spaces based on deep learning is administered by combining feature vectors in in-depth and fully connected layers. The experimental results on 6 databases in the proposed hybrid multibiometric system clearly show the multimodal template obtained from the deep fusion of feature spaces; while being secure against spoof attacks and making the system robust, they can use the low dimensionality of the fused vector to increase the accuracy of a hybrid multimodal biometric system to 100%, showing a significant improvement compared with uni-biometric and other multimodal systems.


Assuntos
Identificação Biométrica , Biometria , Algoritmos , Bases de Dados Factuais , Reconhecimento Psicológico , Identificação Biométrica/métodos
12.
PLoS One ; 18(6): e0287349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363919

RESUMO

Biometric technology is becoming increasingly prevalent in several vital applications that substitute traditional password and token authentication mechanisms. Recognition accuracy and computational cost are two important aspects that are to be considered while designing biometric authentication systems. Thermal imaging is proven to capture a unique thermal signature for a person and thus has been used in thermal face recognition. However, the literature did not thoroughly analyse the impact of feature selection on the accuracy and computational cost of face recognition which is an important aspect for limited resources applications like IoT ones. Also, the literature did not thoroughly evaluate the performance metrics of the proposed methods/solutions which are needed for the optimal configuration of the biometric authentication systems. This paper proposes a thermal face-based biometric authentication system. The proposed system comprises five phases: a) capturing the user's face with a thermal camera, b) segmenting the face region and excluding the background by optimized superpixel-based segmentation technique to extract the region of interest (ROI) of the face, c) feature extraction using wavelet and curvelet transform, d) feature selection by employing bio-inspired optimization algorithms: grey wolf optimizer (GWO), particle swarm optimization (PSO) and genetic algorithm (GA), e) the classification (user identification) performed using classifiers: random forest (RF), k-nearest neighbour (KNN), and naive bayes (NB). Upon the public dataset, Terravic Facial IR, the proposed system was evaluated using the metrics: accuracy, precision, recall, F-measure, and receiver operating characteristic (ROC) area. The results showed that the curvelet features optimized using the GWO and classified with random forest could help in authenticating users through thermal images with performance up to 99.5% which is better than the results of wavelet features by 10% while the former used 5% fewer features. In addition, the statistical analysis showed the significance of our proposed model. Compared to the related works, our system showed to be a better thermal face authentication model with a minimum set of features, making it computational-friendly.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Teorema de Bayes , Identificação Biométrica/métodos , Algoritmos , Biometria
13.
PLoS One ; 18(5): e0286215, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37228099

RESUMO

Most existing secure biometric authentication schemes are server-centric, and users must fully trust the server to store, process, and manage their biometric data. As a result, users' biometric data could be leaked by outside attackers or the service provider itself. This paper first constructs the EDZKP protocol based on the inner product, which proves whether the secret value is the Euclidean distance of the secret vectors. Then, combined with the Cuproof protocol, we propose a novel user-centric biometric authentication scheme called BAZKP. In this scheme, all the biometric data remain encrypted during authentication phase, so the server will never see them directly. Meanwhile, the server can determine whether the Euclidean distance of two secret vectors is within a pre-defined threshold by calculation. Security analysis shows BAZKP satisfies completeness, soundness, and zero-knowledge. Based on BAZKP, we propose a privacy-preserving biometric authentication system, and its evaluation demonstrates that it provides reliable and secure authentication.


Assuntos
Identificação Biométrica , Telemedicina , Privacidade , Algoritmos , Segurança Computacional , Identificação Biométrica/métodos , Biometria , Confidencialidade
14.
Sensors (Basel) ; 23(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050711

RESUMO

Multimodal biometric systems are often used in a wide variety of applications where high security is required. Such systems show several merits in terms of universality and recognition rate compared to unimodal systems. Among several acquisition technologies, ultrasound bears great potential in high secure access applications because it allows the acquisition of 3D information about the human body and is able to verify liveness of the sample. In this work, recognition performances of a multimodal system obtained by fusing palmprint and hand-geometry 3D features, which are extracted from the same collected volumetric image, are extensively evaluated. Several fusion techniques based on the weighted score sum rule and on a wide variety of possible combinations of palmprint and hand geometry scores are experimented with. Recognition performances of the various methods are evaluated and compared through verification and identification experiments carried out on a homemade database employed in previous works. Verification results demonstrated that the fusion, in most cases, produces a noticeable improvement compared to unimodal systems: an EER value of 0.06% is achieved in at least five cases against values of 1.18% and 0.63% obtained in the best case for unimodal palmprint and hand geometry, respectively. The analysis also revealed that the best fusion results do not include any combination between the best scores of unimodal characteristics. Identification experiments, carried out for the methods that provided the best verification results, consistently demonstrated an identification rate of 100%, against 98% and 91% obtained in the best case for unimodal palmprint and hand geometry, respectively.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Algoritmos , Biometria/métodos , Mãos/diagnóstico por imagem , Mãos/anatomia & histologia , Ultrassonografia
15.
Comput Intell Neurosci ; 2023: 8389193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909969

RESUMO

With the continuous development of computer technology, many institutions in society have higher requirements for the efficiency and reliability of identification systems. In sectors with a high-security level, the use of traditional key and smart card system has been replaced by the identification system of biometric technology. The use of fingerprint and face recognition in biometric technology is a biometric technology that does not constitute an infringement on the human body and is convenient and reliable. The biometric technology has been continuously improved, and the existing biometric technologies are based on unimodal biometric features. The unimodal biometric technology has its own limitations such as proposing single information and checking data affected by the environment, which makes it difficult for the technology to play its advantages in practical applications. In this paper, we use CNN-SRU deep learning to preprocess a large amount of complex data in the perceptual layer. The data collected in the perceptual layer are first transmitted to CNN convolutional neural network for simple classification and analysis and then arrives at the LSTM session to update again and optimize the screening to improve the biometric performance. The results show that the CNN-LSTM, CNN-GRU, and CNN algorithms show a decreasing trend in accuracy under the three error evaluation criteria of RMSE, MAE, and ME, from 0.35 to 0.07, 0.58 to 0.19, and 0.38 to 0.15, respectively. The recognition rate of multifeature fusion can reach 95.2%; the recognition efficiency of the multibiometric authentication system and accuracy rate has been significantly improved. It provides a strong guarantee for the regional standardization, high integration, generalization, and modularization of multibiometric identification system application products.


Assuntos
Identificação Biométrica , Humanos , Reprodutibilidade dos Testes , Identificação Biométrica/métodos , Redes Neurais de Computação , Algoritmos , Biometria/métodos
16.
Sensors (Basel) ; 23(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36904666

RESUMO

Periocular recognition has emerged as a particularly valuable biometric identification method in challenging scenarios, such as partially occluded faces due to COVID-19 protective masks masks, in which face recognition might not be applicable. This work presents a periocular recognition framework based on deep learning, which automatically localises and analyses the most important areas in the periocular region. The main idea is to derive several parallel local branches from a neural network architecture, which in a semi-supervised manner learn the most discriminative areas in the feature map and solve the identification problem solely upon the corresponding cues. Here, each local branch learns a transformation matrix that allows for basic geometrical transformations (cropping and scaling), which is used to select a region of interest in the feature map, further analysed by a set of shared convolutional layers. Finally, the information extracted by the local branches and the main global branch are fused together for recognition. The experiments carried out on the challenging UBIRIS-v2 benchmark show that by integrating the proposed framework with various ResNet architectures, we consistently obtain an improvement in mAP of more than 4% over the "vanilla" architecture. In addition, extensive ablation studies were performed to better understand the behavior of the network and how the spatial transformation and the local branches influence the overall performance of the model. The proposed method can be easily adapted to other computer vision problems, which is also regarded as one of its strengths.


Assuntos
Identificação Biométrica , COVID-19 , Humanos , Algoritmos , Redes Neurais de Computação , Identificação Biométrica/métodos , Face/anatomia & histologia
17.
Sensors (Basel) ; 23(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991690

RESUMO

Mobile user authentication acts as the first line of defense, establishing confidence in the claimed identity of a mobile user, which it typically does as a precondition to allowing access to resources in a mobile device. NIST states that password schemes and/or biometrics comprise the most conventional user authentication mechanisms for mobile devices. Nevertheless, recent studies point out that nowadays password-based user authentication is imposing several limitations in terms of security and usability; thus, it is no longer considered secure and convenient for the mobile users. These limitations stress the need for the development and implementation of more secure and usable user authentication methods. Alternatively, biometric-based user authentication has gained attention as a promising solution for enhancing mobile security without sacrificing usability. This category encompasses methods that utilize human physical traits (physiological biometrics) or unconscious behaviors (behavioral biometrics). In particular, risk-based continuous user authentication, relying on behavioral biometrics, appears to have the potential to increase the reliability of authentication without sacrificing usability. In this context, we firstly present fundamentals on risk-based continuous user authentication, relying on behavioral biometrics on mobile devices. Additionally, we present an extensive overview of existing quantitative risk estimation approaches (QREA) found in the literature. We do so not only for risk-based user authentication on mobile devices, but also for other security applications such as user authentication in web/cloud services, intrusion detection systems, etc., that could be possibly adopted in risk-based continuous user authentication solutions for smartphones. The target of this study is to provide a foundation for organizing research efforts toward the design and development of proper quantitative risk estimation approaches for the development of risk-based continuous user authentication solutions for smartphones. The reviewed quantitative risk estimation approaches have been divided into the following five main categories: (i) probabilistic approaches, (ii) machine learning-based approaches, (iii) fuzzy logic models, (iv) non-graph-based models, and (v) Monte Carlo simulation models. Our main findings are summarized in the table in the end of the manuscript.


Assuntos
Identificação Biométrica , Telemedicina , Humanos , Smartphone , Reprodutibilidade dos Testes , Segurança Computacional , Identificação Biométrica/métodos , Biometria , Confidencialidade
18.
Math Biosci Eng ; 20(2): 1716-1729, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36899505

RESUMO

The use of conventional bio-signals such as an electrocardiogram (ECG) for biometric authentication is vulnerable to a lack of verification of continuity of signals; this is because the system does not consider the change in signals caused by a change in the situation of a person, that is, conventional biological signals. Prediction technology based on tracking and analyzing new signals can overcome this shortcoming. However, since the biological signal data sets are massive, their utilization is crucial for higher accuracy. In this study, we defined a 10 × 10 matrix for 100 points based on the R-peak point and an array for the dimension of the signals. Furthermore, we defined the future predicted signals by analyzing the continuous points in each array of the matrices at the same point. As a result, the accuracy of user authentication was 91%.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Eletrocardiografia/métodos
19.
Neural Netw ; 161: 105-115, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739628

RESUMO

Person re-identification (ReID), considered as a sub-problem of image retrieval, is critical for intelligent security. The general practice is to train a deep model on images from a particular scenario (also known as a domain) and perform retrieval tests on images from the same domain. Thus, the model has to be retrained to ensure good performance on unseen domains. Unfortunately, retraining will introduce the so called catastrophic forgetting problem existing in deep learning models. To address this problem, we propose a Continual person re-identification model via a Knowledge-Preserving (CKP) mechanism. The proposed model is able to accumulate knowledge from continuously changing scenarios. The knowledge is updated via a graph attention network from the human cognitive-inspired perspective as the scenario changes. The accumulated knowledge is used to guide the learning process of the proposed model on image samples from new-coming domains. We finally evaluate and compare CKP with fine-tuning, continual learning in image classification and person re-identification, and joint training. Experiments on representative benchmark datasets (Market1501, DukeMTMC, CUHK03, CUHK-SYSU, and MSMT17, which arrive in different orders) demonstrate the advantages of the proposed model in preventing forgetting, and experiments on other benchmark datasets (GRID, SenseReID, CUHK01, CUHK02, VIPER, iLIDS, and PRID, which are not available during training) demonstrate the generalization ability of the proposed model. The CKP outperforms the best comparative model by 0.58% and 0.65% on seen domains (datasets available during training), and by 0.95% and 1.02% on never seen domains (datasets not available during training) in terms of mAP and Rank1, respectively. Arrival order of the training datasets, guidance of accumulated knowledge for learning new knowledge and parameter settings are also discussed.


Assuntos
Identificação Biométrica , Humanos , Identificação Biométrica/métodos , Benchmarking , Estudos Longitudinais
20.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772096

RESUMO

In this work, a novel Window Score Fusion post-processing technique for biometric gait recognition is proposed and successfully tested. We show that the use of this technique allows recognition rates to be greatly improved, independently of the configuration for the previous stages of the system. For this, a strict biometric evaluation protocol has been followed, using a biometric database composed of data acquired from 38 subjects by means of a commercial smartwatch in two different sessions. A cross-session test (where training and testing data were acquired in different days) was performed. Following the state of the art, the proposal was tested with different configurations in the acquisition, pre-processing, feature extraction and classification stages, achieving improvements in all of the scenarios; improvements of 100% (0% error) were even reached in some cases. This shows the advantages of including the proposed technique, whatever the system.


Assuntos
Identificação Biométrica , Dispositivos Eletrônicos Vestíveis , Humanos , Identificação Biométrica/métodos , Biometria , Marcha , Reconhecimento Psicológico , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...